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MODIFICATION OF GODUNOV’S NUMERICAL SCHEME

FOR SOLVING PROBLEMS OF PULSED LOADING OF SOFT SOILS

UDC 539.3V. G. Bazhenov and V. L. Kotov

This paper considers a modification of the “predictor” stage of Godunov’s discontinuity decay method
for problems of nonlinear deformation of soft soils. Soil behavior is described by the Grigoryan’s
taking into account nonlinear diagrams of volumetric deformation, shear strength, and plasticity.
Assumptions are formulated that reduce the auxiliary problem of the decay of a discontinuity in soils
to the well-known problem that has a unique solution. Examples of numerical calculations are given.

Introduction. At present, numerical modeling of the unsteady deformation processes of soils has been
performed using [1] the discontinuity decay method for solving gas-dynamic problems. Among the doubtless ad-
vantages of this method is the joint application of Lagrange’s and Euler’s approaches to description of the motion
of continuous media, which considerably extends the range of problems solved. At the same time, for soils, there
have been few papers on this topic that take into account their shear strength. This is due primarily to difficulties
involved in solving the problem of decay of an arbitrary discontinuity. Godunov et al. [1], Kochin et al. [2], and
Rozhdestvenskii and Yanenko [3] solved the discontinuity decay problem for media with better studied properties,
in particular for fluids and gases, and constructed a generalized solution of the problem for a system of nonlinear
equations. The studies cited showed that, generally, the discontinuity decay problem has a nonunique solution.
Afanas’ev and Bazhenov [4] constructed discontinuous solutions of one-dimensional dynamic equations for elasto-
plastic media in Lagrange variables. Afanas’ev and Bazhenov [4] and Merzhievskii [5] studied a discontinuity decay
model for one-dimensional viscoelastic and elastoplastic problems. Demidov and Koreneev [6] extended Godunov’s
finite volume method to the solution of two-dimensional problems of elastoplastic deformation of metals using a
linearized version of calculation of the problem of decay of an arbitrary discontinuity. Abuzyarov et al. [7] used
a combined approach to solving problems of unsteady deformation of compressible media, including soils, which
takes into account the nonlinearity of the diagram of volume compression of material at large stresses. Demidov
and Korneev [6] used a similar approach to solve problems at low stresses. In [6, 7], the constitutive relations are
the Prandtl–Reuss plastic flow relations with the Mises yield condition and the laws of conservation of mass and
momentum (Grigoryan model).

In the study of discontinuities solutions, the most widely used method for extending the constitutive equations
of deformable media is the replacement of the original differential equations by an equivalent system of integral
conservation laws. With this replacement, the system of equations is brought to divergent form and is integrated
over an arbitrary spatial domain. As is shown in [8], the Prandtl–Reuss model cannot be reduced to divergent
form, and, hence, transformed to a full system of integral conservation laws. Kondaurov [9, 10] considered a
generalization of the dynamic hardening flow equations based on a kinematic equation in the form of a conservation
law that relates the total displacement velocity gradient to particle velocity gradients. Using hyperbolic variational
inequalities, Sadovskii [11, 12] examined the problem of constructing generalized solutions containing discontinuities
of velocities, stress, and hardening parameters. The existence and uniqueness of a generalized solution are proved,
and a classification of admissible discontinuous solutions of the type of elastoplastic waves is given.
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Despite the obvious advances, solution of the problem in the case of a nonlinear and irreversible diagram
of volume compression of materials and possible shear strength and plasticity, as is assumed in the Grigoryan
model, is a complex and still unsolved mathematical problem. In numerical implementation of the basic relations
of the mechanics of continuous media and the Grigoryan model using Godunov’s scheme of first-order accuracy, it
is possible to ignore some of the indicated properties by virtue of high approximation viscosity.

In the present paper, we consider constitutive relations for deriving a solution of the problem of arbitrary
discontinuity decay for soft soil or porous media taking into account the nonlinearity of diagrams of volume com-
pression and shear strength. Assumptions are formulated that reduce the problem posed to a known one which
has a unique self-similar solution. The validity of the adopted assumptions is examined and the applicability of the
linearized method for calculating discontinuity decay in explosive loading problems for soil is studied over a wider
pressure range than that indicated in [7].

1. Constitutive Equations. The problem of dynamic deformation of soil is formulated in Euler variables
in Cartesian or cylindrical coordinates xy (y is the symmetry axis). The constitutive equations follow from the
relations of continuum mechanics that express the laws of conservation of mass and momentum:

ρ,t + (ρux),x + (ρuy),y = −ν(ρux)/x,

(ρux),t + (ρu2
x − σxx),x + (ρuxuy − σxy),y = −ν(ρu2

x − σxx − σθθ)/x, (1.1)

(ρuy),t + (ρuxuy − σxy),x + (ρu2
x − σyy),y = −ν(ρuxuy − σxy)/x.

Here ρ is the density, ux and uy are the velocity vector components in the x and y directions, respectively, σij (i, j =
x, y, θ) are the Cauchy stress tensor components, and the subscript after the comma denotes partial differentiation
with respect to the relevant variable; in the two-dimensional problem, ν = 0, and in the axisymmetric problem,
ν = 1. The shear properties of soft soil are described using the Grigoryan model [13]

DSij
dt

+ λSij = 2µeij (i, j = 1, 2), (1.2)

where eij are the strain rate deviator components, Sij are the stress deviator components, DSij/dt is the Jaumann
derivative with respect to time, and µ is the shear modulus. If the plasticity condition is satisfied, λ > 0, and for
purely elastic deformation, λ = 0. The system is closed by a barotropic equation which relates the pressure p and
density: p = f(ρ). Thus, system (1.1), (1.2) is closed relative to the vector of the unknowns {ρ, ux, uy, sxx, sxy, syy}.

2. Numerical Solution. Godunov’s method for numerical solution of system (1.1), (1.2) and its modi-
fications are described in detail in [6, 7]. In the present paper, we study the “predictor” stage of the well-known
numerical method based on the general scheme given in [3]. The main constituents of the “predictor” stage are
solution of the problem of decay of a discontinuity at each edge of the difference grid cell and determination of fluxes
of the required quantities through relevant faces. The system of quasilinear equations for which the discontinuity
decay problem is formulated in the present paper is a flat (ν = 0), one-dimensional (∂/∂z ≡ 0), and elastic (λ = 0)
analog of the full two-dimensional system (1.1), (1.2) in a coordinate system attached to the edge of the difference
grid cell. A solution is constructed under the following assumptions:

1) the effect of shear waves on the parameters of longitudinal waves is insignificant;
2) discontinuous solutions (shock waves) are distinguished only for density and normal velocity.
Assumption 1 implies replacement of the Jaumann derivative in relations (1.2) by a total spatial derivative.

This replacement is permissible for small rotations of the edges of the difference grid cells in a time step ∆t/2 in
view of the high approximation viscosity of the first-order scheme. In this case, the number of equations decreases
by one because the last equation of (1.2) is integrated, resulting in the well-known relation for a uniaxial deformed
state, szz = −srr/2. The required system of equations has the form

ρ̇+ uρ,r + ρu,r = 0, u̇+ uu,r − σ,r/ρ = 0, σ̇ + uσ,r − ρa2u,r = 0,

v̇ + uv,r − τ,r/ρ = 0, τ̇ + uτ,r − ρb2v,r = 0.
(2.1)

We denote the vector of parameters {ρ, u, σ, v, τ} by U ; u and v are the velocity components and σ and τ are the
stress tensor components in a coordinate system attached to the grid edge r = r0. In this case, the discontinuity
line r0 is the boundary between the “left” cell of the difference grid with the parameters U(1) and the “right” cell
with the parameters U(2):
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r < r0: U = U(1), r > r0: U = U(2); (2.2)

a2 = c2 +
4µ
3ρ
, b2 =

µ

ρ
, c2 =

dp

dρ
. (2.3)

The generalized solution of system (2.1) can have a finite number of piecewise smooth discontinuity lines (not more
than five, according to number of characteristics), outside which it is a classical solution of the Cauchy problem:

ξ1 = u− a, ξ2 = u− b, ξ3 = u, ξ4 = u+ b, ξ5 = u+ a. (2.4)

The characteristics (2.4) on the plane (r, t) are straight lines and divide the characteristic plane into six zones. The
zone numbers for which the solution is sought correspond to the characteristic numbers and are denoted by Roman
numerals. To the left of the first characteristic and to the right of the fifth characteristic there are zones in which
the variables coincide with the initial data (2.2). According to the theory of generalized solutions of the quasilinear
equations [3], each characteristic ξ = ξk(U) with number k can correspond to a centered rarefaction wave (RW) of
the kth type, a shock wave (SW) of the kth type or a contact discontinuity (CD).

In the region of its smoothness, the self-similar solution U(y) of the quasilinear equations (2.1) reduces to
solution of the system of ordinary differential equations

dU

dy
=

rk(U)
rk(U) grad ξk(U)

, (2.5)

where y = r/t is a self-similar variable and rk(U) is the right eigenvector of the matrix of Eqs. (2.1); the operator
grad is determined in [3]. The unknown quantities in zone I are denoted by capital letters with the superscript I:
RI, U I, V I, ΣI, and T I. Using the first equation of (2.5), we eliminate the expression r1(U) grad ξ1(U) from the
remaining differential equations and obtain a system of five equations, in which the independent variable is the
density ρ:

dU

dρ
= −a(ρ)

ρ
or U I = u1 −

RI∫
ρ1

a1(ζ)
ζ

dζ.

The normal stress on the discontinuity Σ can be written as Σ = S−P , where S and P are the deviator component
and the pressure:

dΣ
dρ

= −a2(ρ) or ΣI = σ1 −
RI∫
ρ1

a2
1(ζ) dζ. (2.6)

Using expression (2.3) for the longitudinal wave velocity, expression (2.6) can be integrated:

ΣI = σ1 −
RI∫
ρ1

a2
1(ζ) dζ = s1 − p1 −

RI∫
ρ1

a2
1(ζ) dζ = s1 − p1 −

RI∫
ρ1

c21(ζ) dζ −
RI∫
ρ1

4
3
µ1

ζ
dζ

= s1 − p1 − p(RI) + p1 − (4µ1/3) ln (RI/ρ1) = SI − P I.

Here
SI = s1 − (4µ1/3) ln (RI/ρ1). (2.7)

The expression obtained here for the stress deviator component is also contained in [14, 15]. The shear velocity and
stress components remain equal to the initial values in the “left” cell:

dV

dρ
= 0 or V I = v1,

dT

dρ
= 0 or T I = τ1.

In the case of SW propagation, to find the quantities in zone I, it is necessary to use relations on the
discontinuity obtained from the integral analogs of the first two equations of system (2.1):∮

ρ dr − ρu dt = 0,
∮
ρu dr − (ρu2 − σ) dt = 0. (2.8)

Denoting the rate of displacement of the discontinuity surface (or SW) in a normal direction by D = dr/dt and
integrating Eq. (2.8) over a contour enveloping the discontinuity surface, similarly to [1–3], we obtain the dynamic
compatibility conditions at the discontinuities:
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[ρ]D − [ρu] = 0, [ρu]D − [ρu2 − σ] = 0. (2.9)

The square brackets denote the difference of the relevant quantities to the left and right of the discontinuity (relative
to the normal vector). Using (2.9) for the quantities to the left and right of the characteristic ξ1, we obtain the
expression

U I = u1 −
√

(σ1 − ΣI)/(1/ρ1 − 1/RI).

The relationship between the pressure P I and the density RI is given by an equation of state. The deviator
component SI changes according to (2.7). Thus, two smooth curves representing the solution of Eqs. (2.5) and (2.9)
in the space of variables U = {R,U,Σ, V, T} [3] pass through the point determined by relation (2.2). One curve
represents a set of states that can be related to the state (2.2) by means of a RW of the kth type, and the other
represents a set of states that can be related to the state (2.2) by means of a SW of the kth type. At the point
given by relation (2.2), these two curves have second-order tangency, i.e, in a small neighborhood of the point given
by relation (2.4), the shock transition curves are close to the curves describing transitions for rarefaction waves [3].
The choice of a segment of this or that curve as a solution is determined by the stability condition [3], which for
RW in zone I is defined by the inequality ξ1(U) > ξ1(U(1)). In view of the aforesaid, the velocity U I and stress ΣI

in zone I are given by

U I =


u1 −

RI∫
ρ1

a1(ζ)
ζ

dζ (RW),

u1 −
√

(σ1 − ΣI)/(1/ρ1 − 1/RI) (SW),

ΣI = s1 − P I(RI)− (4µ1/3) ln (RI/ρ1).
(2.10)

The formulas for the normal velocity UV and stress ΣV in zone V are obtained similarly.
The shear characteristics of the medium are determined in zones II and IV of the characteristic plane.

Because the present Grigoryan’s model assumes the absence of the dilatancy effect (i.e., density variation in the
shear wave), the unknown quantities can be written as a function of density ρ = const = RI. Therefore, the
relationship between shearing stresses and velocity is written as

T II − τ1 =

V II∫
v1

ρb1 dϑ = RIb1(V II − v1). (2.11)

The effect of shear flow in zones II and IV on the normal components of the velocity and stress tensor is estimated
as a quantity of the second order of smallness in strain components [16], and, therefore, as a first approximation, it
can be ignored. Consideration of the linearized formulas [7] for U and Σ leads to a similar conclusion. The factor
at ui and σi has order 1/ai and the factor at vi and τi has order 1/a2

i (i = 1, 2).
The conditions on the third characteristic (on the CD)

U II = U IV, ΣII = ΣIV, T II = T IV = T, V II = V IV = V (2.12)

make it possible to close expressions (2.10)–(2.12) and similar ones in other zones. We consider a configuration in
the cell for which decay results in the formation of a RW propagating to the left and a SW propagating to the right.
The condition on the CD yields the equation

u2 − u1 +

√
σ2 − Σ

1/ρ2 − 1/RV
+

RI∫
ρ1

a1(ζ)
ζ

dζ = 0. (2.13)

The densities as functions of Σ are obtained by solving the equations

Σ = s1 − P I(RI)− (4µ1/3) ln (RI/ρ1), Σ = s2 − PV(RV)− (4µ2/3) ln (RV/ρ2).

If in (2.13), we replace Σ by −P and the longitudinal velocity a by the velocity of sound in the medium c (2.3),
we obtain an expression that coincides with that given in [7] for calculation of discontinuity decay in a fluid medium
with a nonlinear strain diagram. If the integral in (2.13) is replaced by an approximate expression using the “left”
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TABLE 1

x p, MPa σ, MPa u, m/sec

−1 < x < x1 90 −100 0
x2 < x < x3 57.645 −47.645 60.36
x4 < x < x5 53.25 −43.25 70.80
x5 < x < x6 33.25 −43.25 70.80
x6 < x < x7 12.818 22.818 33.36
x7 < x < 1 0 0 0

Fig. 1

rectangle formula, the expression obtained coincides with the linearized formulas from [6, 7]. In addition, in the
linearized version, RW and SW do not differ. Similarly, the tangential stress T and the velocity V in zones II and
IV of the characteristic plane can be determined from the expressions

V =
RIbIv1 +RVbVv2 + τ2 − τ1

RIbI +RVbV
, T =

RIbIRVbV(v2 − v1) + τ2R
IbI + τ1R

VbV

RIbI +RVbV
. (2.14)

Here bI = b1(RI) and bV = b2(RV). Expressions (2.14) are identical to those obtained in [7], except for the
expressions for the densities RI and RV. Thus, relations (2.10) and (2.14) allow one to evaluate the vector U over
the entire characteristic plane (r, t).

Ignoring the effect of shearing stresses on the longitudinal wave characteristics, in the case of constant shear
quantities in zones I and II, the parameters of longitudinal and shear waves can be calculated independently of
each other. If {U,P, S, V, T} are used as independent quantities, then, according to [ 11, 12], system (2.1) can be
written as LU = 0, where L ≡ AU,t−BU,r is a differential operator (A and B are symmetrical coefficient matrices,
and A is positively determined). From a priori estimates, Sadovskii [11, 12] inferred on the unique solubility of
the discontinuity decay problem with nearly constant coefficients of the matrix A. Similar linearization was used
in [6, 7] but the question of the uniqueness of the solution was not examined. Rozhdestvenskii and Yanenko [3]
proved the existence and uniqueness of a generalized solution for a system of two hydrodynamic equations in the
case where the stability conditions similar to those used above are satisfied and there are some restrictions on the
dependence of pressure on density. Under assumptions 1 and 2, the first three equations of system (2.1) are analogs
of the equations of gas dynamics, for which the discontinuity decay problem has been adequately studied.

Thus, using the first-order Godunov’s scheme and the nonlinear Grigoryan’s model of soil, a solution is
constructed and justified for the problem of arbitrary discontinuity decay in the form of a combination of a SW and
a RW for longitudinal waves and as a simple wave for transverse waves.

3. Numerical Calculations. Below we give results of calculations using a numerical procedure [7] with a
modified “predictor” stage. In the calculations, we used the solution of the discontinuity decay problem obtained
above taking into account nonlinear diagrams of volume compression and shear strength of the medium.

To estimate the applicability of the numerical procedure to solution of problems of elastoplastic deformation,
we consider the following problem. The equation of state of the medium has the form p = K(ρ/ρ0 − 1), where
K = 250 MPa; µ = 150 MPa, σy = 15 MPa, and ρ0 = 1 g/cm3. The parameters to the left of the discontinuity
have the following values: ρ(1) = 1.36 g/cm 3, p(1) = p0 = 90 MPa, and σ(1) = σ0 = −100 MPa, and u(1) = 0.
The parameters to the right of the discontinuity correspond to the unperturbed state: ρ(2) = ρ0 and p(2) = σ(2) =
u(2) = 0. The “flow” configuration resulting from discontinuity decay is shown in Fig. 1. The figure shows a RW
moving to the left and a CD and a SW moving to the right. The waves consist of an elastic precursor for both SW
and SW and a plastic wave front. The time t is normalized to t0 = 1 msec, and the space variable r is normalized
to the dimension of the regions r0 = 1 m. The sequence of the solution is shown schematically [12] at the bottom of
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Fig. 1 for the pressure distribution as an example. The values of the dimensionless variable x = r/r0 are as follows:
x1 = −0.63, x2 = −0.5787, x3 = −0.4364, x4 = −0.4292, x5 = 0.0708, x6 = 0.5524, and x7 = 0.684. The values of
the pressure, stress, and velocity are listed in Table 1. In the ranges of the variable x1 < x < x2 and x3 < x < x4,
a linear distribution is adopted. The distributions of pressure, stress, and velocity along the r axis are shown in
Fig. 2 (solid curves). From Fig. 2a it follows that the pressure in elastic media undergoes a discontinuity. The
stress and velocity are continuous for passage through the CD (Fig. 2b and c). To verify the validity of the above
approach to solving the discontinuity decay problem in elastoplastic media, we obtained a solution of this problem
by the “cross” scheme, which approximates the equations of flow theory in Lagrange variables. The solution was
constructed without introducing artificial viscosity with Courant number equal to unity (relative to the rate of
propagation of elastic longitudinal waves). The solution by the “cross” scheme is shown in Fig. 2 by dashed curves.
A comparison of these two solutions shows the validity of the indicated approach. The dot-and-dashed curves
correspond to the solution of the present problem by a scheme of first-order approximation. A comparison of the
solutions shows that the assumption introduced within the framework of the first-order scheme is justified.

The effect of the nonlinear diagram on the wave pattern of the solution is examined in the problem of an
explosion of a spherical explosive pressure charge in soil. Soft soils such as sand are characterized by nonlinear
diagrams of compression and rarefaction and nonzero shear strength [17, 18]. The constants M and n of the power-
law dependence are equal to 2.1 GPa and 1.8, respectively, and the constants A and B of the shock adiabat are
equal to 500 m/sec and 2.41, respectively. The values of the constants of the interpolating polynomial are as follows:
α = β = 0.06, ρ1 = 1.86 g/cm3, ρ4 = 2.15 g/cm3, γc = 3, and γp = 4. The initial density of the sand mixture
is ρ0 = 1.76 g/cm3, ρg = 2.65 g/cm3, the initial velocity of sound for rarefaction is C0 = 350 m/sec, the shear
modulus is G = 100 MPa, and the yield strength constants are k = 1.25 and b = 0.5 MPa [17, 18]. The effect of the
explosion is calculated using the model of an instantaneous wave detonation, and the initial pressure in the field of
detonation products is equal to 12 GPa.

The time variations of the pressure on the contact boundary “detonation products–soil” are given in Fig. 3a
(curves 1). In Figs. 3 and 4, solid curves show results of solution using nonlinear decay of a discontinuity, and
dashed curves are obtained for linearized decay. The contact parameters are a solution of the relevant problem of
discontinuity decay at the “predictor” stage of the numerical method. At the initial time, the difference is very
large, but with time, it decreases considerably. Curves 2 in Fig. 3a correspond to the pressure in the cell adjoining
the contact boundary. Figure 3b shows the time dependence of the velocity (notation same as in Fig. 3a). At a
distance of about three initial radii of the charge, the difference practically disappears, whereas the pressure in the
cells remains equal to about 150 MPa, which is far beyond the shear modulus and the yield strength of soft soils.
The efficiency of the numerical procedure of [7] using the linearized version of calculation of discontinuity decay is
also confirmed by the results of [17], in which such a solution is compared with experimental data for the problem
of explosion of a laid-on explosive in sand.

Below we give results of solving the problem of shock loading of soil using as an example the problem of
collision of a long steel cylindrical impactor rod and a sandy soil [18]. The diameter of the impactor rod is 20 mm,
and its length is 1000 mm. The mechanical characteristics of the impactor material are as follows: elastic modulus
200 GPa, Poisson‘s ratio 0.3, yield strength 1200 MPa, and density 7.8 g/cm3. The experiments were conducted
with a dry compressed sand mixture of a natural composition; the parameters of the equation of state of the mixture
are given above.

A comparison of calculation results by the linearized and modified procedures with experimental data is
given in Fig. 4. The time dependence of the resistance to the penetration of the impactor into the soil is shown. At
the initial time t = 0, the ratio of the values of contact forces calculated by different procedures exceeds 300% but
even at t = 2 µsec, the values of the forces become equal. The resistance force can be determined by integration
of both contact stresses and stresses in the section of the impactor rod, as is assumed in the “inverse experiment”
procedure [18]. The dot-and-dashed curve in Fig. 4 shows the resistance force obtained by integration of longitudinal
stresses in the rod in the section at a distance of five diameters from the butt of the impactor. Considering scheme
viscosity, there is no difference between the nonlinear and linearized versions of calculations. In calculations taking
into account the nonlinear behavior of soil at the “predictor” stage of the numerical scheme, the maximum value of
the force practically coincides with that obtained in experiment. The difference between experimental data (points
in Fig. 4) and numerical results obtained by the linearized approach is 15%, which does not exceed the measurement
error.

608



Fig. 2

Fig. 3
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Fig. 4

4. Conclusions. A modification of Godunov’s scheme for solving problems of nonlinear deformation of
continuous media described by the Grigoryan model is obtained. Implementation of the “predictor” stage of the
numerical scheme involves solution of the arbitrary discontinuity decay problem taking into account a nonlinear
compression diagram and nonzero shear strength. A formulation of the problem is proposed that under certain
assumptions reduces the problem to the well-known one which has a unique self-similar solution. Special cases
of the discontinuity decay problem in this formulation are the well-known relations of fluid mechanics (in the
absence of shear strength) and linearized relations, whose uniqueness can be proved using the method of variational
inequalities. The assumptions for the first-order approximation scheme are validated by numerically solving test
problems of pulsed deformation of soils. The linearized version of calculating the discontinuity decay problem at
the “predictor” stage of the difference scheme gives acceptable results throughout the nearly entire range of pulsed
loads. The nonlinear version used to validate the linearized approach allows estimating the parameters in the near
zone of explosion or contact forces in solving collision problems with high gradients.
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